Please use this identifier to cite or link to this item: http://repositorio.ufpso.edu.co/jspui/handle/123456789/3446
Full metadata record
DC FieldValueLanguage
dc.contributor.authorQuintero Coronel, Daniel Andrés
dc.contributor.authorLenis Rodas, Yuhan Arley
dc.contributor.authorCorredor Martinez, Lesme Antonio
dc.contributor.authorGonzalez Quiroga, Arturo
dc.date.accessioned2021-09-27T03:40:54Z
dc.date.available2021-09-27T03:40:54Z
dc.date.issued2021-04-01
dc.identifier.citationQuintero-Coronel DA, Lenis-Rodas YA, Corredor LA, Perreault P, GonzalezQuiroga A, Thermochemical conversion of coal and biomass blends in a top-lit updraft fixed bed reactor: experimental assessment of the ignition front propagation velocity, Energy, https://doi.org/10.1016/ j.energy.2020.119702.en_US
dc.identifier.issnISSN:0360-5442en_US
dc.identifier.urihttp://repositorio.ufpso.edu.co/jspui/handle/123456789/3446
dc.description.abstractCo-thermochemical conversion of coal and biomass can potentially decrease the use of fossil carbon and pollutant emissions. This work presents experimental results for the so-called top-lit updraft fixed bed reactor, in which the ignition front starts at the top and propagates downward while the gas product flows upwards. The study focuses on the ignition front propagation velocity for the co-thermochemical conversion of palm kernel shell and high-volatile bituminous coal. Within the range of assessed air superficial velocities, the process occurred under gasification and near stoichiometric conditions. Under gasification conditions increasing coal particle size from 7.1 to 22 mm decreased ignition front velocity by around 26% regardless of the coal volume percentage. Furthermore, increasing coal volume percentage and decreasing coal particle size result in product gas with higher energy content. For the operation near stoichiometric conditions, increasing coal volume percentage from 10 to 30% negatively affected the ignition front velocity directly proportional to its particle size. Additional experiments confirmed a linear dependence of ignition front velocity on air superficial velocity. Further steps in the development of the top-lit updraft technology are implementing continuous solids feeding and variable cross-sectional area and optimizing coal particle size distribution.en_US
dc.description.sponsorshipUniversidad Francisco de Paula Santander Ocañaen_US
dc.description.tableofcontentsspa
dc.format.mimetypespa
dc.language.isoengen_US
dc.publisherHenrik Lunden_US
dc.relationhttps://www.sciencedirect.com/journal/energyen_US
dc.relation.ispartofseriesGITYD;ART02112
dc.relation.uri
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subjectTLUD, combustión, gasificación, propagación frontal, gas de síntesis, velocidad de combustiónen_US
dc.titleThermochemical conversion of coal and biomass blends in a top-lit updraft fixed bed reactor: Experimental assessment of the ignition front propagation velocityen_US
dc.typeArtículoen_US
dc.title.translatedConversión termoquímica de mezclas de carbón y biomasa en un reactor de lecho fijo de corriente ascendente con iluminación superior: evaluación experimental de la velocidad de propagación del frente de igniciónen_US
dc.subject.proposalspa
dc.subject.keywordsTLUD, combustion, gasification, front propagation, syngas, burning rateen_US
dc.subject.lembspa
dc.identifier.instnameinstname:Universidad Francisco de Paula Santander Ocañaspa
dc.identifier.reponamereponame:Repositorio Institucional UFPSO
dc.identifier.repourlrepourl:https://repositorio.ufpso.edu.cospa
dc.publisher.facultyFacultad ingenieríasen_US
dc.publisher.grantorUniversidad Francisco de Paula Santander Ocañaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.localspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.driverinfo:eu-repo/semantics/article
dc.type.localArtículoen_US
dc.type.redcolArtículo de investigación http://purl.org/redcol/resource_type/ART Artículo de divulgación http://purl.org/redcol/resource_type/ARTDIVspa
dc.relation.referencesP. Basu, “Chapter 8 - Design of Biomass Gasifiers,” P. B. T.-B. G. Basu Pyrolysis and Torrefaction (Third Edition), Ed. Academic Press, 2018, pp. 263–329. Journal Pre-proofen_US
dc.relation.referencesP. McKendry, “Energy production from biomass (part 3): gasification technologies,” Bioresour. Technol., vol. 83, no. 1, pp. 55–63, 2002, doi:en_US
dc.relation.referencesO. F. Obi, S. L. Ezeoha, and I. C. Okorie, “Energetic performance of a top-lit updraft (TLUD) cookstove,” Renew. Energy, vol. 99, pp. 730–737, 2016en_US
dc.relation.referencesT. B. Reed and R. Larson, “A Wood-Gas Stove for Developing Countries,” in Developments in Thermochemical Biomass Conversion, A. V Bridgwater and D. G. B. Boocock, Eds. Dordrecht: Springer Netherlands, 1997, pp. 985–993.en_US
dc.relation.referencesM. Markovic, E. A. Bramer, and G. Brem, “Experimental investigation of wood combustion in a fixed bed with hot air,” Waste Manag., vol. 34, no. 1, pp. 49–62, 2014en_US
dc.relation.referencesC. Yin, L. A. Rosendahl, and S. K. Kær, “Grate-firing of biomass for heat and power production,” Prog. Energy Combust. Sci., vol. 34, no. 6, pp. 725–754, 2008, doi: https://doi.org/10.1016/j.pecs.2008.05.002en_US
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.DOI10.1016/j.energy.2020.119702en_US
Appears in Collections:Artículos

Files in This Item:
There are no files associated with this item.


This item is licensed under a Creative Commons License Creative Commons