Please use this identifier to cite or link to this item: http://repositorio.ufpso.edu.co/jspui/handle/123456789/3443
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEspinel Blanco, Edwin
dc.contributor.authorRomero García, Gonzalo
dc.contributor.authorFlórez Solano, Eder
dc.date.accessioned2021-09-27T00:14:36Z
dc.date.available2021-09-27T00:14:36Z
dc.date.issued2020-01-01
dc.identifier.citationEspinel, E., Romero, G., Florez, E., Caracterización del calor residual de recuperación potencial de los gases de escape en un motor diesel pequeño usando generadores termoeléctricos, (2020) Revista Internacional de Ingeniería Mecánica (IREME) , 14 (10 ), págs. 607-614.doi: https://doi.org/10.15866/ireme.v14i10.19347en_US
dc.identifier.issnISSN: 1970-8734//2532-5655en_US
dc.identifier.urihttp://repositorio.ufpso.edu.co/jspui/handle/123456789/3443
dc.description.abstractThis study evaluates the effect of the operating conditions of a single-cylinder diesel engine on the performance and efficiency of a device to generate electrical energy through the recovery of residual heat from the exhaust gases. The studied device has been formed by coupling 20 thermoelectric modules on the surface of a rectangular heat exchanger. For the analysis, three experimental variables have been selected: engine torque, rotation speed, and temperature of the coolant, which have been varied under three different conditions. The results obtained show that the increase in the engine load generated by the increase in the rotation speed and torque causes an increase in the electrical power produced. The maximum power increase is 12% and 65% by causing changes in the rotation speed and torque of the engine. Similarly, reducing the temperature of the coolant increases the energy conversion efficiency. A decrease of 5 °C in the cooling water increases the overall performance of the device by 10%. The highest level of electrical energy recovered has been 38 W, with an efficiency of 2.4%. The reduced complexity of this type of device and its high potential for improvement makes it a viable way to recover thermal energy wasted by the transport sector.en_US
dc.description.sponsorshipUniversidad Francisco de Paula Santander Ocañaen_US
dc.description.tableofcontentsspa
dc.format.mimetypespa
dc.language.isoengen_US
dc.publisherEthirajan Rathakrishnanen_US
dc.relationhttps://revistas.javeriana.edu.co/index.php/IyUen_US
dc.relation.ispartofseriesGITYD;ART109
dc.relation.uri
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subjectDiesel Engine, Efficiency, Electric Power, Exhaust Gas, Waste, Heat, Recoveryen_US
dc.titleCharacterization of the Potential Recovery Residual Heat from the Exhaust Gases in a Small Diesel Engine Using Thermoelectric Generatorsen_US
dc.typeArtículoen_US
dc.title.translatedCaracterización del calor residual de recuperación potencial de los gases de escape en un motor diesel pequeño utilizando generadores termoeléctricosen_US
dc.description.abstractenglishThis study evaluates the effect of the operating conditions of a single-cylinder diesel engine on the performance and efficiency of a device to generate electrical energy through the recovery of residual heat from the exhaust gases. The studied device has been formed by coupling 20 thermoelectric modules on the surface of a rectangular heat exchanger. For the analysis, three experimental variables have been selected: engine torque, rotation speed, and temperature of the coolant, which have been varied under three different conditions. The results obtained show that the increase in the engine load generated by the increase in the rotation speed and torque causes an increase in the electrical power produced. The maximum power increase is 12% and 65% by causing changes in the rotation speed and torque of the engine. Similarly, reducing the temperature of the coolant increases the energy conversion efficiency. A decrease of 5 °C in the cooling water increases the overall performance of the device by 10%. The highest level of electrical energy recovered has been 38 W, with an efficiency of 2.4%. The reduced complexity of this type of device and its high potential for improvement makes it a viable way to recover thermal energy wasted by the transport sector.en_US
dc.subject.proposalspa
dc.subject.keywordsDiesel Engine, Efficiency, Electric Power, Exhaust Gas, Waste, Heat, Recoveryen_US
dc.subject.lembspa
dc.identifier.instnameinstname:Universidad Francisco de Paula Santander Ocañaspa
dc.identifier.reponamereponame:Repositorio Institucional UFPSO
dc.identifier.repourlrepourl:https://repositorio.ufpso.edu.cospa
dc.publisher.facultyFacultad ingenieríasen_US
dc.publisher.grantorUniversidad Francisco de Paula Santander Ocañaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.localspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.driverinfo:eu-repo/semantics/article
dc.type.localArtículoen_US
dc.type.redcolArtículo de investigación http://purl.org/redcol/resource_type/ART Artículo de divulgación http://purl.org/redcol/resource_type/ARTDIVspa
dc.relation.referencesA. Inayat et al., Integration and simulation of solar energy with hot flue gas system for the district cooling application, Case Studies in Thermal Engineering, vol. 19, p. 100620, 2020.en_US
dc.relation.referencesA. Fathalian and H. Kargarsharifabad, Actual validation of energy simulation and investigation of energy management strategies (Case Study: An office building in Semnan, Iran), Case Studies in Thermal Engineering, vol. 12, pp. 510–516, 2018.en_US
dc.relation.referencesJ. H. Yousif, H. A. Al-Balushi, H. A. Kazem, and M. T. Chaichan, Analysis and forecasting of weather conditions in Oman for renewable energy applications, Case Studies in Thermal Engineering, vol. 13, p. 100355, 2019.en_US
dc.relation.referencesOrozco, W., Acuña, N., Duarte Forero, J., Characterization of Emissions in Low Displacement Diesel Engines Using Biodiesel and Energy Recovery System, (2019) International Review of Mechanical Engineering (IREME), 13 (7), pp. 420-426.en_US
dc.relation.referencesDuarte Forero, J., Lopez Taborda, L., Bula Silvera, A., Characterization of the Performance of Centrifugal Pumps Powered by a Diesel Engine in Dredging Applications, (2019) International Review of Mechanical Engineering (IREME), 13 (1), pp. 11-20.en_US
dc.relation.referencesKoh, W., Mazlan, N., Performance Analysis of Deteriorated Engine Powered by Alternative Fuels, (2018) International Review of Mechanical Engineering (IREME), 12 (11), pp. 902-909.en_US
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.DOI10.15866/ireme.v14i10.19347en_US
Appears in Collections:Artículos

Files in This Item:
There are no files associated with this item.


This item is licensed under a Creative Commons License Creative Commons