Please use this identifier to cite or link to this item: http://repositorio.ufpso.edu.co/jspui/handle/123456789/3438
Full metadata record
DC FieldValueLanguage
dc.contributor.authorF Czubinski, Fernando
dc.contributor.authorNoriega Sanchez, Carlos Javier
dc.contributor.authorK da Silva, Alexandre
dc.contributor.authorMarcelino Neto, Moisés A
dc.contributor.authorBarbosa Jr, Jader R
dc.date.accessioned2021-09-26T23:27:10Z
dc.date.available2021-09-26T23:27:10Z
dc.date.issued2020-06-01
dc.identifier.citationCzubinski, Fernando & Sanchez, Carlos & Silva, Alexandre & A. Marcelino Neto, Moisés & Barbosa Jr, Jader. (2020). Phase equilibrium and liquid viscosity data for R-290/POE ISO 22 mixtures between 283 and 353 K. International Journal of Refrigeration. 114. 10.1016/j.ijrefrig.2020.02.029.en_US
dc.identifier.issnISSN: 1879-2081en_US
dc.identifier.urihttp://repositorio.ufpso.edu.co/jspui/handle/123456789/3438
dc.description.abstractNovel experimental data and theoretical calculations of bubble point pressure and liquid-phase viscosity for a propane (R-290)/POE ISO 22 binary system are presented. The experimental setup consisted of an oscillating-piston viscometer connected in series with a synthetic variable-volume PVT cell. Experimental data were acquired for R-290 with mole fractions ranging from 0.2 to 0.8, temperatures between 283 and 353 K and pressures up to 22.5 bar. The phase equilibrium (bubble point pressure) was modelled using the Peng and Robinson (1976) and PC-SAFT (Gross and Sadowski, 2001) equations of state, while the liquid mixture viscosity data were predicted with the generalized friction theory (f-theory) of Quiñones-Cisneros and Deiters (2006). The absolute average deviations associated with the phase equilibrium and liquid viscosity calculations were 8.39% and 6.56% (Peng-Robinson and PC-SAFT), and 24.77% (generalized f-theory).en_US
dc.description.sponsorshipUniversidad Francisco de Paula Santander Ocañaen_US
dc.description.tableofcontentsspa
dc.format.mimetypespa
dc.language.isoengen_US
dc.publisherF. Ziegleren_US
dc.relationhttps://www.journals.elsevier.com/international-journal-of-refrigerationen_US
dc.relation.ispartofseriesGITYD;ART 104
dc.relation.uri
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subjectPhase equilibrium, Viscosity, Mixtures, Hydrocarbons, Lubricating oil, Equation of stateen_US
dc.titlePhase equilibrium and liquid viscosity data for R-290/POE ISO 22 mixtures between 283 and 353 Ken_US
dc.typeArtículoen_US
dc.title.translatedDatos de equilibrio de fase y viscosidad del líquido para mezclas de R-290 / POE ISO 22 entre 283 y 353 Ken_US
dc.description.abstractenglishNovel experimental data and theoretical calculations of bubble point pressure and liquid-phase viscosity for a propane (R-290)/POE ISO 22 binary system are presented. The experimental setup consisted of an oscillating-piston viscometer connected in series with a synthetic variable-volume PVT cell. Experimental data were acquired for R-290 with mole fractions ranging from 0.2 to 0.8, temperatures between 283 and 353 K and pressures up to 22.5 bar. The phase equilibrium (bubble point pressure) was modelled using the Peng and Robinson (1976) and PC-SAFT (Gross and Sadowski, 2001) equations of state, while the liquid mixture viscosity data were predicted with the generalized friction theory (f-theory) of Quiñones-Cisneros and Deiters (2006). The absolute average deviations associated with the phase equilibrium and liquid viscosity calculations were 8.39% and 6.56% (Peng-Robinson and PC-SAFT), and 24.77% (generalized f-theory).en_US
dc.subject.proposalspa
dc.subject.keywordsPhase equilibrium, Viscosity, Mixtures, Hydrocarbons, Lubricating oil, Equation of stateen_US
dc.subject.lembspa
dc.identifier.instnameinstname:Universidad Francisco de Paula Santander Ocañaspa
dc.identifier.reponamereponame:Repositorio Institucional UFPSO
dc.identifier.repourlrepourl:https://repositorio.ufpso.edu.cospa
dc.publisher.facultyFacultad ingenieríasen_US
dc.publisher.grantorUniversidad Francisco de Paula Santander Ocañaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.localspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.driverinfo:eu-repo/semantics/article
dc.type.localArtículoen_US
dc.type.redcolArtículo de investigación http://purl.org/redcol/resource_type/ART Artículo de divulgación http://purl.org/redcol/resource_type/ARTDIVspa
dc.relation.referencesAhosseini, A., Scurto, A.M., 2008. Viscosity of imidazolium-based ionic liquids at elevated pressures: Cation and anion effects. Int. J. Thermophys. 29, 1222–1243.en_US
dc.relation.referencesAssael, M.J., Trusler, M.J.P., Tsolakis, T.F., 1996. Thermophysical Properties of Fluids: An Introduction to Their Prediction. Imperial College Press. Cambridge Viscosity Inc., 2010. Cambridge viscolab PVT viscometer SPL 440 - Instructions Manual,en_US
dc.relation.referencesBoston MA. Chen, Y., Mutelet, F., Jaubert, J.-.N., 2014. Experimental measurement and modeling of phase diagrams of binary systems encountered in the gasoline desulfurization process using ionic liquids.en_US
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.DOI10.1016/j.ijrefrig.2020.02.029en_US
Appears in Collections:Artículos

Files in This Item:
There are no files associated with this item.


This item is licensed under a Creative Commons License Creative Commons