Please use this identifier to cite or link to this item: http://repositorio.ufpso.edu.co/jspui/handle/123456789/3390
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVelásquez, A M
dc.contributor.authorVelásquez Pérez, T
dc.contributor.authorPuentes, A M
dc.date.accessioned2021-09-25T03:41:53Z
dc.date.available2021-09-25T03:41:53Z
dc.date.issued2019-11-01
dc.identifier.citationVelasquez, A & Pérez, Torcoroma & Puentes, A. (2019). Optimization of the allocation of academic schedules through artificial intelligence techniques. Journal of Physics: Conference Series. 1403. 012019. 10.1088/1742-6596/1403/1/012019.en_US
dc.identifier.issnISSN:1742-6596en_US
dc.identifier.urihttp://repositorio.ufpso.edu.co/jspui/handle/123456789/3390
dc.description.abstractThe programming or assignment of academic schedules in educational institutions has become an important global problem, this is due to the fact that it implies great efforts in time and resources for the staff a burden of this task due to the amount of restrictions and conditions that exist properly involved from the institution. Based on this problem and considering that common algorithms do not offer an optimal solution in this situation, it is necessary to resort to artificial intelligence techniques because they offer methods and algorithms that reduce the time and resources needed to generate an optimal program. This document details different artificial intelligence techniques used for the allocation of schedules, in order to find the technique that best suits the needs of the institution under study Universidad Francisco de Paula Santander, Ocaña located in Colombia, and which will be implemented more forward as a possible solution for the allocation of academic schedules in the institution.en_US
dc.description.sponsorshipUniversidad Francisco de Paula Santander Ocañaen_US
dc.description.tableofcontentsspa
dc.format.mimetypespa
dc.language.isoengen_US
dc.publisherEly Dannieren_US
dc.relationhttps://iopscience.iop.orgen_US
dc.relation.ispartofseriesGITYD;ART 55
dc.relation.uri
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subjectOptimization, schedules, artificialen_US
dc.titleOptimization of the allocation of academic schedules through artificial intelligence techniquesen_US
dc.typeArtículoen_US
dc.title.translatedOptimización de la asignación de horarios académicos mediante técnicas de inteligencia artificialen_US
dc.description.abstractenglishThe programming or assignment of academic schedules in educational institutions has become an important global problem, this is due to the fact that it implies great efforts in time and resources for the staff a burden of this task due to the amount of restrictions and conditions that exist properly involved from the institution. Based on this problem and considering that common algorithms do not offer an optimal solution in this situation, it is necessary to resort to artificial intelligence techniques because they offer methods and algorithms that reduce the time and resources needed to generate an optimal program. This document details different artificial intelligence techniques used for the allocation of schedules, in order to find the technique that best suits the needs of the institution under study Universidad Francisco de Paula Santander, Ocaña located in Colombia, and which will be implemented more forward as a possible solution for the allocation of academic schedules in the institution.en_US
dc.subject.proposalspa
dc.subject.keywordsOptimization, schedules, artificialen_US
dc.subject.lembspa
dc.identifier.instnameinstname:Universidad Francisco de Paula Santander Ocañaspa
dc.identifier.reponamereponame:Repositorio Institucional UFPSO
dc.identifier.repourlrepourl:https://repositorio.ufpso.edu.cospa
dc.publisher.facultyFacultad ingenieríasen_US
dc.publisher.grantorUniversidad Francisco de Paula Santander Ocañaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.localspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.driverinfo:eu-repo/semantics/article
dc.type.localArtículoen_US
dc.type.redcolArtículo de investigación http://purl.org/redcol/resource_type/ART Artículo de divulgación http://purl.org/redcol/resource_type/ARTDIVspa
dc.relation.referencesCubillos M, Pardo E, and Salas R 2013 Problema del school timetabling y algoritmos genéticos: una revisión Vínculos 10 259en_US
dc.relation.referencesJohnston J 2000 Aplicación de algoritmos genéticos para la asignación de carga académica en instituciones de educación superior (Nuevo León: Universidad Autónoma de Nuevo León)en_US
dc.relation.referencesCastro E and Medaglia A 2005 Heurística basada en programación entera binaria para el problema de asignación de salones en una universidad (Bogotá: Universidad de los Andes)en_US
dc.relation.referencesGómez V, Artaza F, Irigoyen E, and Iriondo N 2005 Un método para la asignación de la docencia en el ámbito universitario mediante algoritmos genéticos (Madrid: IV Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados)en_US
dc.relation.referencesCostabel S 2005 Meta heurísticas aplicadas a un problema de asignación de salones y horarios a asignaturas (Montevideo: Universidad de la República)en_US
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.DOI10.1088/1742-6596/1403/1/012019en_US
Appears in Collections:Artículos

Files in This Item:
There are no files associated with this item.


This item is licensed under a Creative Commons License Creative Commons