Please use this identifier to cite or link to this item: http://repositorio.ufpso.edu.co/jspui/handle/123456789/3369
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEspinel Blanco, Edwin Edgardo-
dc.contributor.authorTRIGOS, A. E-
dc.contributor.authorGarcía Guarín, J-
dc.date.accessioned2021-09-24T19:54:26Z-
dc.date.available2021-09-24T19:54:26Z-
dc.date.issued2019-06-01-
dc.identifier.citationA E Trigos et al 2019 J. Phys.: Conf. Ser. 1257 012001en_US
dc.identifier.issnISSN:1742-6596en_US
dc.identifier.urihttp://repositorio.ufpso.edu.co/jspui/handle/123456789/3369-
dc.description.abstractThis article describes parameters such as electrical currents, equipment voltage, separation distance between the welding gun and the piece to be welded, the electrode diameter, material thickness, and the travel speed of the welding application performed through the gas metal arc welding process. This is the main parameter for the automation of the process, To evaluate this parameter, a prototype of an automated gas metal arc welding bench was constructed, which consists of a mobile work table that secures the piece to be welded, and a structure that holds the welding gun in a fixed position, allowing during the welding the movement of the piece automatically at a speed estimated by the user. For this, ultrasound and speed sensors were used, together with the Labview-Arduino automation programs that simulate horizontal welding and finally, two proportional–integral–derivative calculation methods are compared: 1) Mathematical model of the system and 2) Calculation of the model of the plant based on actual data input voltage vs output speed. Unraveling with greater approximation the adjustment of parameters (Kc, Ti, Td), which allow for a speed designated by the operator, keeping stable the welding speed used in the gas metal Arc welding processes with respect to the piece to be welded.en_US
dc.description.sponsorshipUniversidad Francisco de Paula Santander Ocañaen_US
dc.description.tableofcontentsspa
dc.format.mimetypespa
dc.language.isoengen_US
dc.publisherEly Dannieren_US
dc.relationhttps://iopscience.iop.org/article/10.1088/1742-6596/1126/1/011001/pdfen_US
dc.relation.ispartofseriesGITYD;ART34-
dc.relation.uri
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subjectDesingen_US
dc.titleDesign of a PID control for a prototype of an automated GMAW welding benchen_US
dc.typeArtículoen_US
dc.title.translatedDesign of a PID control for a prototype of an automated GMAW welding benchen_US
dc.description.abstractenglishThis article describes parameters such as electrical currents, equipment voltage, separation distance between the welding gun and the piece to be welded, the electrode diameter, material thickness, and the travel speed of the welding application performed through the gas metal arc welding process. This is the main parameter for the automation of the process, To evaluate this parameter, a prototype of an automated gas metal arc welding bench was constructed, which consists of a mobile work table that secures the piece to be welded, and a structure that holds the welding gun in a fixed position, allowing during the welding the movement of the piece automatically at a speed estimated by the user. For this, ultrasound and speed sensors were used, together with the Labview-Arduino automation programs that simulate horizontal welding and finally, two proportional–integral–derivative calculation methods are compared: 1) Mathematical model of the system and 2) Calculation of the model of the plant based on actual data input voltage vs output speed. Unraveling with greater approximation the adjustment of parameters (Kc, Ti, Td), which allow for a speed designated by the operator, keeping stable the welding speed used in the gas metal Arc welding processes with respect to the piece to be welded.en_US
dc.subject.proposalspa
dc.subject.keywordsDesingen_US
dc.subject.lembspa
dc.identifier.instnameinstname:Universidad Francisco de Paula Santander Ocañaspa
dc.identifier.reponamereponame:Repositorio Institucional UFPSO
dc.identifier.repourlrepourl:https://repositorio.ufpso.edu.cospa
dc.publisher.facultyFacultad ingenieríasen_US
dc.publisher.grantorUniversidad Francisco de Paula Santander Ocañaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.localspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.driverinfo:eu-repo/semantics/article
dc.type.localArtículoen_US
dc.type.redcolArtículo de investigación http://purl.org/redcol/resource_type/ART Artículo de divulgación http://purl.org/redcol/resource_type/ARTDIVspa
dc.relation.referencesMiguel V, Martínez-Conesa E, Segura F and Manjabacas M 2012 Optimización del proceso de soldadura GMAW de uniones a tope de la aleación AA 6063-T5 basada en la metodología de superficie de respuesta y en la geometría del cordón de soldadura Revista de metalurgia 48(5) 333-350en_US
dc.relation.referencesGarcía E, Plata J and Quintero A 2017 Revisión de técnicas de sistemas de visión artificial para la inspección de procesos de soldadura tipo GMAW Revista Colombiana de Tecnologías de Avanzada 1(29) 47-57en_US
dc.relation.referencesRamirez-Matheus A, Díaz-Rodríguez M and González-Estrada O 2017 Estrategia de optimización para la síntesis dimensional de un robot paralelo 5R para una aplicación de mesa de corte Revista UIS Ingenierías 16(2) 197-206en_US
dc.relation.referencesBarraza A, Rúa J, Sosa J, Díaz J, Yime E and Roldán J 2016 Modelado dinámico del manipulador serial Mitsubishi Movemaster RV-M1 usando SolidWorks Revista UIS Ingenierías 15(2) 49-62.en_US
dc.relation.referencesOgata K and Yang Y 2002 Modern control engineering (India: Prentice Hall).en_US
dc.relation.referencesVilla-Salazar D, Hincapié-Zuluaga D and Torres-López E 2015 Simulación computacional de la transferencia de calor en herramientas usadas en soldadura por fricción-agitación Revista UIS Ingenierías 14(2) 19-26en_US
dc.relation.referencesKim B and Park T 2007 Estimation of cable tension force using the frequency-based system identification method Journal of Sound and Vibration 304(3-5) 660-676en_US
dc.relation.referencesKrampit A 2016 IOP Conference Series: Materials Science and Engineering 125 012021en_US
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.DOI10.1088/1742-6596/1257/1/012001en_US
Appears in Collections:Artículos

Files in This Item:
There are no files associated with this item.


This item is licensed under a Creative Commons License Creative Commons