Please use this identifier to cite or link to this item: http://repositorio.ufpso.edu.co/jspui/handle/123456789/3246
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNolasco Serna, Christian
dc.contributor.authorAfanador García, Nelson
dc.contributor.authorGuerrero Gómez, Gustavo
dc.coverage.spatialOcaña, Norte de Santander, Colombiaen_US
dc.date.accessioned2021-09-20T21:35:13Z
dc.date.available2021-09-20T21:35:13Z
dc.date.issued2020-11-04
dc.identifier.citationC Nolasco et al 2020 J. Phys.: Conf. Ser. 1672 012003en_US
dc.identifier.issn1742-6596en_US
dc.identifier.urihttp://repositorio.ufpso.edu.co/jspui/handle/123456789/3246
dc.description.abstractThe study of efficient solution methods for mathematical models from physics is important for the purpose of making predictions. In the study of the equations of mathematical physics, the heat equation has an important place. Techniques for studying heat transfer include topics such as Fourier analysis, Bessel functions, Legendre polynomials, etc. Throughout this article we will study the heat equation from the point of view of calculating its solutions. For this reason, the solution of the heat equation is proposed by the Fourier method and the explicit numerical method. In the last part of the article studies the accuracy of the numerical method in relation to heat transfer in a spherical polymer and raises the advantage of working with numerical methods to solve mathematical models derived from conservative laws.en_US
dc.description.sponsorshipUniversidad Francisco de Paula Santander Ocañaen_US
dc.description.tableofcontentsspa
dc.language.isoengen_US
dc.publisherEly Dannieren_US
dc.relationhttps://iopscience.iop.org/article/10.1088/1742-6596/1672/1/012003/pdfen_US
dc.relation.ispartofseriesCERG;ART11
dc.relation.urihttps://iopscience.iop.org/article/10.1088/1742-6596/1672/1/012003
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.sourceRevista Journal of Physics: Conference Series, Volumen 1672, Número 1, 2020
dc.sourceRevista Journal of Physics: Conference Series
dc.subjectPolímerosen_US
dc.titleFinite difference method applied to heat transfer in polymersen_US
dc.typeArtículoen_US
dc.title.translatedMétodo de diferencias finitas aplicado a la transferencia de calor en polímerosen_US
dc.description.abstractenglishThe study of efficient solution methods for mathematical models from physics is important for the purpose of making predictions. In the study of the equations of mathematical physics, the heat equation has an important place. Techniques for studying heat transfer include topics such as Fourier analysis, Bessel functions, Legendre polynomials, etc. Throughout this article we will study the heat equation from the point of view of calculating its solutions. For this reason, the solution of the heat equation is proposed by the Fourier method and the explicit numerical method. In the last part of the article studies the accuracy of the numerical method in relation to heat transfer in a spherical polymer and raises the advantage of working with numerical methods to solve mathematical models derived from conservative laws.en_US
dc.subject.proposalspa
dc.subject.keywordsPolymersen_US
dc.subject.lembspa
dc.identifier.instnameinstname:Universidad Francisco de Paula Santander Ocañaspa
dc.identifier.reponamereponame:Repositorio Institucional UFPSOspa
dc.identifier.repourlrepourl:https://repositorio.ufpso.edu.cospa
dc.publisher.facultyFacultad ingenieríasen_US
dc.publisher.grantorUniversidad Francisco de Paula Santander Ocañaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.localspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.driverinfo:eu-repo/semantics/article
dc.type.localArtículoen_US
dc.type.redcolArtículo de investigación http://purl.org/redcol/resource_type/ART Artículo de divulgación http://purl.org/redcol/resource_type/ARTDIV
dc.relation.referencesRaissi M, Karniadakis G 2018 Hidden physics models: Machine learning of nonlinear partial differential equations J. of Comp. Physics 357 125-141en_US
dc.relation.referencesCarslow H S, Jaeger I C 1979 Conduction of Heat in Solids, 2nd edition (Oxford University, New York)en_US
dc.relation.referencesFourier J 1822 Theorie Analytique de la Chaleur (Paris: Chez Firmin Didot, Père et Fils)en_US
dc.relation.referencesTuring A 1937 On Computable Numbers, with an Application to the Entscheidungsproblem J. of Math. 58(5) 345-363en_US
dc.relation.referencesLi J, Chen Y T 2008 Computational Partial Differential Equations Using Matlab (New York: Chapman & Hall)en_US
dc.relation.referencesUnsworth J, Duarte F J 1979 Heat diffusion in a solid sphere and Fourier theory: An elementary practical example American Journal of Physics 47 981-983en_US
dc.relation.referencesGuerrero Gómez G, Espinel Blanco E, Sánchez Acevedo H G 2017 Análisis de temperaturas durante la cocción de ladrillos macizos y sus propiedades finales Revista Tecnura 21(51) 118–131en_US
dc.relation.referencesNolasco C, Guerrero Gómez G, Gómez J A 2019 Mathematical model of firing process of Ladrillera Ocaña, Colombia J. Phys. Conf. Ser. 1408 012017:1en_US
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.identifier.DOI10.1088/1742-6596/1672/1/012003en_US
Appears in Collections:Artículos

Files in This Item:
There are no files associated with this item.


This item is licensed under a Creative Commons License Creative Commons